Prof. John Sader | ARC Centre of Excellence in Exciton Science

Prof. John Sader

Chief Investigator

Sader is an applied mathematician with extensive experience in modelling nanomechanics and energy flow in nanoscale systems. His expertise in analytical, numerical and computational solutions of the Boltzmann equation is utilised heavily, providing a foundation for mesoscopic electron and phonon transport.

Qualifications: 
PhD, University of New South Wales
BE, University of New South Wales
Centre Research Themes: 
2. Control of Excitons

Publications

Journal Articles
Pullin, D. I.; Sader, J. E. On the starting vortex generated by a translating and rotating flat plate. Journal of Fluid Mechanics 2021, 906, A9; PII S0022112020007624 DOI: 10.1017/jfm.2020.762. doi: 10.1017/jfm.2020.762
Chakraborty, D.; Uthe, B.; Malachosky, E. W.; Pelton, M.; Sader, J. E. Viscoelasticity Enhances Nanometer-Scale Slip in Gigahertz-Frequency Liquid Flows. The Journal of Physical Chemistry Letters 2021, 12 (13), 3449 - 3455 DOI: 10.1021/acs.jpclett.1c00600. doi: 10.1021/acs.jpclett.1c00600
Uthe, B.; Collis, J. F.; Madadi, M.; Sader, J. E.; Pelton, M. Highly Spherical Nanoparticles Probe Gigahertz Viscoelastic Flows of Simple Liquids Without the No-Slip Condition. The Journal of Physical Chemistry Letters 2021, 12 (18), 4440 - 4446 DOI: 10.1021/acs.jpclett.1c01013. doi: 10.1021/acs.jpclett.1c01013
Liu, N. Z.; Ladiges, D. R.; Nassios, J.; Sader, J. E. Acoustic flows in a slightly rarefied gas. Physical Review Fluids 2020, 5 (4), 043401 DOI: 10.1103/PhysRevFluids.5.043401. doi: 10.1103/PhysRevFluids.5.043401
Ostovar, B.; Su, M. - N.; Renard, D.; Clark, B. D.; Dongare, P. D.; Dutta, C.; Gross, N.; Sader, J. E.; Landes, C. F.; Chang, W. - S.; et al. Acoustic Vibrations of Al Nanocrystals: Size, Shape, and Crystallinity Revealed by Single-Particle Transient Extinction Spectroscopy. The Journal of Physical Chemistry A 2020, 124 (19), 3924 - 3934 DOI: 10.1021/acs.jpca.0c01190. doi: 10.1021/acs.jpca.0c01190
Sader, J. E. The automation of robust interatomic-force measurements. Review of Scientific Instruments 2020, 91 (10), 103702 DOI: 10.1063/5.0018599. doi: 10.1063/5.0018599
Wang, J.; Yu, K.; Yang, Y.; Hartland, G. V.; Sader, J. E.; Wang, G. Ping. Strong vibrational coupling in room temperature plasmonic resonators. Nature Communications 2019, 10, 1527 DOI: 10.1038/s41467-019-09594-z. doi: 10.1038/s41467-019-09594-z
Sader, J. E. What is the oscillation amplitude of a vibrating cantilever?. Review of Scientific Instruments 2019, 90 (8), 086103 DOI: 10.1063/1.5115768. doi: 10.1063/1.5115768
Shi, Y.; Ladiges, D. R.; Sader, J. E. Origin of spurious oscillations in lattice Boltzmann simulations of oscillatory noncontinuum gas flows. Physical Review E 2019, 100 (5), 53317 DOI: 10.1103/PhysRevE.100.053317. doi: 10.1103/PhysRevE.100.053317
Dolleman, R. J.; Hsu, M.; Vollebregt, S.; Sader, J. E.; van der Zant, H. S. J.; Steeneken, P. G.; Ghatkesar, M. K. Mass measurement of graphene using quartz crystal microbalances. Applied Physics Letters 2019, 115 (5), 053102 DOI: 10.1063/1.5111086. doi: 10.1063/1.5111086
Fan, B.; Huertas-Cerdeira, C.; Cossé, J.; Sader, J. E.; Gharib, M. Effect of morphology on the large-amplitude flapping dynamics of an inverted flag in a uniform flow. Journal of Fluid Mechanics 2019, 874, 526 - 547 DOI: 10.1017/jfm.2019.474. doi: 10.1017/jfm.2019.474
Sader, J. E.; Delapierre, M.; Pellegrino, S. Shear-induced buckling of a thin elastic disk undergoing spin-up. International Journal of Solids and Structures 2019, 166, 75-82 DOI: 10.1016/j.ijsolstr.2019.01.038. doi: 10.1016/j.ijsolstr.2019.01.038
O'Sullivan, T. J.; Kannam, S. K.; Chakraborty, D.; Todd, B. D.; Sader, J. E. Viscoelasticity of liquid water investigated using molecular dynamics simulations. Physical Review Fluids 2019, 4 (12), 123302 DOI: 10.1103/PhysRevFluids.4.123302. doi: 10.1103/PhysRevFluids.4.123302
Ng, C.; Zeng, P.; Lloyd, J. A.; Chakraborty, D.; Roberts, A.; Smith, T. A.; Bach, U.; Sader, J. E.; Davis, T. J.; Gómez, D. E. Large-Area Nanofabrication of Partially Embedded Nanostructures for Enhanced Plasmonic Hot-Carrier Extraction. ACS Applied Nano Materials 2019, 2 (3), 1164 - 1169 DOI: 10.1021/acsanm.8b01988. doi: 10.1021/acsanm.8b01988
Stassi, S.; De Laurentis, G.; Chakraborty, D.; Bejtka, K.; Chiodoni, A.; Sader, J. E.; Ricciardi, C. Large-scale parallelization of nanomechanical mass spectrometry with weakly-coupled resonators. Nature Communications 2019, 10 (1) DOI: 10.1038/s41467-019-11647-2. doi: 10.1038/s41467-019-11647-2
Ladiges, D. R.; Sader, J. E. Variational method enabling simplified solutions to the linearized Boltzmann equation for oscillatory gas flows. Physical Review Fluids 2018, 3 (5), 053401 DOI: 10.1103/PhysRevFluids.3.053401. doi: 10.1103/PhysRevFluids.3.053401
Goza, A.; Colonius, T.; Sader, J. E. Global modes and nonlinear analysis of inverted-flag flapping. Journal of Fluid Mechanics 2018, 857, 312 - 344 DOI: 10.1017/jfm.2018.728. doi: 10.1017/jfm.2018.728
Sader, J. E.; M. Hanay, S.; Neumann, A. P.; Roukes, M. L. Mass Spectrometry Using Nanomechanical Systems: Beyond the Point-Mass Approximation. Nano Letters 2018, 18 (3), 1608 - 1614 DOI: 10.1021/acs.nanolett.7b04301. doi: 10.1021/acs.nanolett.7b04301
Sader, J. E.; Hughes, B. D.; Huber, F.; Giessibl, F. J. Interatomic force laws that evade dynamic measurement. Nature Nanotechnology 2018, 13 (12), 1088 - 1091 DOI: 10.1038/s41565-018-0277-x. doi: 10.1038/s41565-018-0277-x
Delapierre, M.; Chakraborty, D.; Sader, J. E.; Pellegrino, S. Wrinkling of transversely loaded spinning membranes. International Journal of Solids and Structures 2018, 139-140, 163 - 173 DOI: 10.1016/j.ijsolstr.2018.01.031. doi: 10.1016/j.ijsolstr.2018.01.031
Mills, S.; Rotella, C.; McCarthy, E. K.; Hill, D. J.; Wang, J. - J.; Donegan, J. F.; Cahoon, J. F.; Sader, J. E.; Boland, J. J. Solvent-Engineered Stress in Nanoscale Materials. ACS Applied Materials & Interfaces 2018, 10 (50), 44183–44189 DOI: 10.1021/acsami.8b17201. doi: 10.1021/acsami.8b17201
Chakraborty, D.; Hartland, G. V.; Pelton, M.; Sader, J. E. When Can the Elastic Properties of Simple Liquids Be Probed Using High-Frequency Nanoparticle Vibrations?. The Journal of Physical Chemistry C 2018, 122 (25), 13347 - 13353 DOI: 10.1021/acs.jpcc.7b09951. doi: 10.1021/acs.jpcc.7b09951
Devkota, T.; Chakraborty, D.; Yu, K.; Beane, G.; Sader, J. E.; Hartland, G. V. On the measurement of relaxation times of acoustic vibrations in metal nanowires. Physical Chemistry Chemical Physics 2018, 20 (26), 17687 - 17693 DOI: 10.1039/C8CP03230K. doi: 10.1039/C8CP03230K
Yi, C.; Su, M. - N.; Dongare, P. D.; Chakraborty, D.; Cai, Y. - Y.; Marolf, D. M.; Kress, R. N.; Ostovar, B.; Tauzin, L. J.; Wen, F.; et al. Polycrystallinity of Lithographically Fabricated Plasmonic Nanostructures Dominates Their Acoustic Vibrational Damping. Nano Letters 2018, 18 (6), 3494 - 3501 DOI: 10.1021/acs.nanolett.8b00559. doi: 10.1021/acs.nanolett.8b00559
Larsen, T.; Schmid, S.; Dohn, S.; Sader, J. E.; Boisen, A.; Villanueva, L. G. Position and mode dependent optical detection back-action in cantilever beam resonators. Journal of Micromechanics and Microengineering 2017, 27 (3), 035006 DOI: 10.1088/1361-6439/aa591e. doi: 10.1088/1361-6439/aa591e
Yi, C.; Dongare, P. D.; Su, M. - N.; Wang, W.; Chakraborty, D.; Wen, F.; Chang, W. - S.; Sader, J. E.; Nordlander, P.; Halas, N. J.; et al. Vibrational coupling in plasmonic molecules. Proceedings of the National Academy of Sciences 2017, 114 (44), 11621 - 11626 DOI: 10.1073/pnas.1712418114. doi: 10.1073/pnas.1712418114
Su, M. - N.; Dongare, P. D.; Chakraborty, D.; Zhang, Y.; Yi, C.; Wen, F.; Chang, W. - S.; Nordlander, P.; Sader, J. E.; Halas, N. J.; et al. Optomechanics of Single Aluminum Nanodisks. Nano Letters 2017, 17 (4), 2575 - 2583 DOI: 10.1021/acs.nanolett.7b00333. doi: 10.1021/acs.nanolett.7b00333
Collis, J. F.; Chakraborty, D.; Sader, J. E. Autonomous propulsion of nanorods trapped in an acoustic field. Journal of Fluid Mechanics 2017, 825, 29 - 48 DOI: 10.1017/jfm.2017.381. doi: 10.1017/jfm.2017.381
Mills, S.; Sader, J. E.; Boland, J. J. Material characterisation of nanowires with intrinsic stress. Nanotechnology 2017, 28 (35), 355706 DOI: 10.1088/1361-6528/aa7c31. doi: 10.1088/1361-6528/aa7c31