Dr Asaph Widmer-Cooper | ARC Centre of Excellence in Exciton Science

Widmer-Cooper is a computational chemist with expertise in modelling the structure and dynamics of amorphous, crystalline and self-assembled materials. He helps develop solution-processed materials for extracting energy from sunlight and contributes to fundamental studies of exciton behaviour.

ORCID iD: 
0000000154596960
Centre Research Themes: 
1. Excitonic Systems for Solar Energy Conversion
2. Control of Excitons
Summary of any other of your centre responsibilities: 
  • Deputy Champion of the Multiscale Modelling Platform
  • University of Sydney Node Manager
  • Member of the Equity and Diversity Committee

 

Publications

Journal Articles
Zhang, H.; Liu, Y.; Shahidan, M. Faris Shah; Kinnear, C.; Maasoumi, F.; Cadusch, J.; Akinoglu, E. Metin; James, T. D.; Widmer-Cooper, A.; Roberts, A.; et al. Direct Assembly of Vertically Oriented, Gold Nanorod Arrays. Advanced Functional Materials 2021, 31 (6), 2006753 DOI: 10.1002/adfm.202006753. doi: 10.1002/adfm.202006753
Sharma, A.; Wojciechowski, J. P.; Liu, Y.; Pelras, T.; Wallace, C. M.; Müllner, M.; Widmer-Cooper, A.; Thordarson, P.; Lakhwani, G. The Role of Fiber Agglomeration in Formation of Perylene-Based Fiber Networks. Cell Reports Physical Science 2020, 1 (8), 100148 DOI: 10.1016/j.xcrp.2020.100148. doi: 10.1016/j.xcrp.2020.100148
Liu, Y.; Bernardi, S.; Widmer-Cooper, A. Stability of pinned surface nanobubbles against expansion: Insights from theory and simulation. The Journal of Chemical Physics 2020, 153 (2), 024704 DOI: 10.1063/5.0013223. doi: 10.1063/5.0013223
Monego, D.; Kister, T.; Kirkwood, N.; Doblas, D.; Mulvaney, P.; Kraus, T.; Widmer-Cooper, A. When Like Destabilizes Like: Inverted Solvent Effects in Apolar Nanoparticle Dispersions. ACS Nano 2020, 14 (5), 5278 - 5287 DOI: 10.1021/acsnano.9b03552. doi: 10.1021/acsnano.9b03552
Monego, D.; Kister, T.; Kirkwood, N.; Mulvaney, P.; Widmer-Cooper, A.; Kraus, T. Correction to “On the Colloidal Stability of Apolar Nanoparticles: The Role of Ligand Length”. Langmuir 2020, 36 (36), 10892 - 10893 DOI: 10.1021/acs.langmuir.0c02478. doi: 10.1021/acs.langmuir.0c02478
Sabatini, R. P.; Liao, C.; Bernardi, S.; Mao, W.; Rahme, M. S.; Widmer-Cooper, A.; Bach, U.; Huang, S.; Ho‐Baillie, A. W. Y.; Lakhwani, G. Solution‐Processed Faraday Rotators Using Single Crystal Lead Halide Perovskites. Advanced Science 2020, 7 (7), 1902950 DOI: doi.org/10.1002/advs.201902950. doi: doi.org/10.1002/advs.201902950
Rathnayake, P. V. G. M.; Bernardi, S.; Widmer-Cooper, A. Evaluation of the AMOEBA force field for simulating metal halide perovskites in the solid state and in solution. The Journal of Chemical Physics 2020, 152 (2), 024117 DOI: 10.1063/1.5131790. doi: 10.1063/1.5131790
Mao, W.; Hall, C. R.; Bernardi, S.; Cheng, Y. - B.; Widmer-Cooper, A.; Smith, T. A.; Bach, U. Light-induced reversal of ion segregation in mixed-halide perovskites. Nature Materials 2020 DOI: 10.1038/s41563-020-00826-y. doi: 10.1038/s41563-020-00826-y
Liu, Y.; Widmer-Cooper, A. A versatile simulation method for studying phase behavior and dynamics in colloidal rod and rod-polymer suspensions. The Journal of Chemical Physics 2019, 150 (24), 244508 DOI: 10.1063/1.5096193. doi: 10.1063/1.5096193
Lloyd, J. A.; Liu, Y.; Ng, S. Hock; Thai, T.; Gómez, D. E.; Widmer-Cooper, A.; Bach, U. Self-assembly of spherical and rod-shaped nanoparticles with full positional control. Nanoscale 2019, 11 (47), 22841-22848 DOI: 10.1039/C9NR06679A. doi: 10.1039/C9NR06679A
Monego, D.; Kister, T.; Kirkwood, N.; Mulvaney, P.; Widmer-Cooper, A.; Kraus, T. Colloidal Stability of Apolar Nanoparticles: Role of Ligand Length. Langmuir 2018, 34 (43), 12982 - 12989 DOI: 10.1021/acs.langmuir.8b02883. doi: 10.1021/acs.langmuir.8b02883
Kister, T.; Monego, D.; Mulvaney, P.; Widmer-Cooper, A.; Kraus, T. Colloidal Stability of Apolar Nanoparticles: The Role of Particle Size and Ligand Shell Structure. ACS Nano 2018, 12 (6), 5969 - 5977 DOI: 10.1021/acsnano.8b02202. doi: 10.1021/acsnano.8b02202