Bach is a solar energy expert who has worked with numerous solar industry partners including: Hoechst, NTera, Bluescope Steel, Bosch, Innovia, Suntech, Trina Solar.
Centre Research Themes:
1. Excitonic Systems for Solar Energy Conversion
2. Control of Excitons
Publications
Conference Papers
Single-Crystalline and Back-Contact Perovskite Optoelectronics. In 4th Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics; 4th Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics; Fundació Scito: Tsukuba-shi, Japan, 2019. doi: 10.29363/nanoge.iperop.2020.040
Journal Articles
Structural and Photophysical Properties of Guanidinium–Iodide‐Treated Perovskite Solar Cells. Solar RRL 2023, 7 (1), 2200852 DOI: 10.1002/solr.202200852. doi: 10.1002/solr.202200852
Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells. Nature Materials 2023, 22 (1), 73 - 83 DOI: 10.1038/s41563-022-01399-8. doi: 10.1038/s41563-022-01399-8
Efficient and stable formamidinium-caesium perovskite solar cells and modules from lead acetate-based precursor. Energy and Environmental Science 2023, 16 (1), 138-147 DOI: 10.1039/D2EE01634F. doi: 10.1039/D2EE01634F
Ideality Factor Mapping of Back‐Contact Perovskite Solar Cells. Advanced Energy Materials 2023, 2200796 DOI: 10.1002/aenm.202200796. doi: 10.1002/aenm.202200796
Naphthalene-imide Self-assembled Monolayers as a Surface Modification of ITO for Improved Thermal Stability of Perovskite Solar Cells. ACS Applied Energy Materials 2023 DOI: 10.1021/acsaem.2c02735. doi: 10.1021/acsaem.2c02735
Toward Uniaxially Textured CsPbIBr 2 Perovskite Thin Films with Twin Domains by Potassium Incorporation. ACS Energy Letters 2023, 8 (1), 699 - 706 DOI: 10.1021/acsenergylett.2c01915. doi: 10.1021/acsenergylett.2c01915
Phase-Control of Single-Crystalline Inorganic Halide Perovskites via Molecular Coordination Engineering. Advanced Functional Materials 2022, 32 (16), 2270096 DOI: 10.1002/adfm.202109442. doi: 10.1002/adfm.202109442
Can Laminated Carbon Challenge Gold? Toward Universal, Scalable, and Low‐Cost Carbon Electrodes for Perovskite Solar Cells. Advanced Materials Technologies 2022, 7 (6), 2101148 DOI: 10.1002/admt.202101148. doi: 10.1002/admt.202101148
Solution Processable Direct Bandgap Copper-Silver-Bismuth Iodide Photovoltaics: Compositional Control of Dimensionality and Optoelectronic Properties. Advanced Energy Materials 2022, 12 (32), 2201482 DOI: 10.1002/aenm.202201482. doi: 10.1002/aenm.202201482
Intensity Modulated Photocurrent Microspectrosopy for Next Generation Photovoltaics. Small Methods 2022, 6 (9), 2200493 DOI: 10.1002/smtd.202200493. doi: 10.1002/smtd.202200493
Back-contact perovskite solar cell fabrication via microsphere lithography. Nano Energy 2022, 102, 107695 DOI: 10.1016/j.nanoen.2022.107695. doi: 10.1016/j.nanoen.2022.107695
Self-Enhancement of Efficiency and Self-Attenuation of Hysteretic Behavior of Perovskite Solar Cells with Aging. The Journal of Physical Chemistry Letters 2022, 13 (12), 2792 - 2799 DOI: 10.1021/acs.jpclett.2c00278. doi: 10.1021/acs.jpclett.2c00278
The impact of spiro-OMeTAD photodoping on the reversible light-induced transients of perovskite solar cells. Nano Energy 2021, 82, 105658 DOI: 10.1016/j.nanoen.2020.105658. doi: 10.1016/j.nanoen.2020.105658
Balancing Charge Extraction for Efficient Back‐Contact Perovskite Solar Cells by Using an Embedded Mesoscopic Architecture. Advanced Energy Materials 2021, 11 (21), 2100053 DOI: 10.1002/aenm.202100053. doi: 10.1002/aenm.202100053
A naphthalene diimide side-chain polymer as an electron-extraction layer for stable perovskite solar cells. Materials Chemistry Frontiers 2021, 5 (1), 450-457 DOI: 10.1039/D0QM00685H. doi: 10.1039/D0QM00685H
The critical role of composition-dependent intragrain planar defects in the performance of MA1–xFAxPbI3 perovskite solar cells. Nature Energy 2021, 6 (6), 624 - 632 DOI: 10.1038/s41560-021-00830-9. doi: 10.1038/s41560-021-00830-9
ERRATUM: “Chemical passivation of the perovskite layer and its real-time effect on the device performance in back-contact perovskite solar cells” [J. Vac. Sci. Technol. A 38, 060401 (2020)]. Journal of Vacuum Science & Technology A 2021, 39 (2), 027002 DOI: 10.1116/6.0000931. doi: 10.1116/6.0000931
Microfluidic Processing of Ligand‐Engineered NiO Nanoparticles for Low‐Temperature Hole‐Transporting Layers in Perovskite Solar Cells. Solar RRL 2021, 5 (8), 2100342 DOI: 10.1002/solr.202100342. doi: 10.1002/solr.202100342
A Lab-to-Fab Study toward Roll-to-Roll Fabrication of Reproducible Perovskite Solar Cells under Ambient Room Conditions. Cell Reports Physical Science 2021, 2 (1), 100293 DOI: 10.1016/j.xcrp.2020.100293. doi: 10.1016/j.xcrp.2020.100293
Intermediate phase-enhanced Ostwald ripening for the elimination of phase segregation in efficient inorganic CsPbIBr2 perovskite solar cells中间相促进CsPbIBr2晶体生长以消除高效无机钙钛矿太阳能电池的卤素相分离. Science China Materials 2021, 64 (11), 2655-2666 DOI: 10.1007/s40843-021-1660-6. doi: 10.1007/s40843-021-1660-6
Solution-processed antireflective coating for back-contact perovskite solar cells. Optics Express 2020, 28 (9), 12650-12660 DOI: 10.1364/OE.384039. doi: 10.1364/OE.384039
Enhancement of the intrinsic light harvesting capacity of Cs2AgBiBr6 double perovskite via modification with sulphide. Journal of Materials Chemistry A 2020, 8 (4), 2008 - 2020 DOI: 10.1039/C9TA10422D. doi: 10.1039/C9TA10422D
High‐Throughput Characterization of Perovskite Solar Cells for Rapid Combinatorial Screening. Solar RRL 2020, 4 (7), 2000097 DOI: 10.1002/solr.202000097. doi: 10.1002/solr.202000097
Unique Layer‐Doping‐Induced Regulation of Charge Behavior in Metal‐Free Carbon Nitride Photoanodes for Enhanced Performance. ChemSusChem 2020, 13 (2), 328-333 DOI: 10.1002/cssc.201902967. doi: 10.1002/cssc.201902967
Alkali Cation Doping for Improving the Structural Stability of 2D Perovskite in 3D/2D PSCs. Nano Letters 2020, 20 (2), 1240 - 1251 DOI: 10.1021/acs.nanolett.9b04661. doi: 10.1021/acs.nanolett.9b04661
Structure engineering of hierarchical layered perovskite interface for efficient and stable wide bandgap photovoltaics. Nano Energy 2020, 75, 104917 DOI: 10.1016/j.nanoen.2020.104917. doi: 10.1016/j.nanoen.2020.104917
Honeycomb-shaped charge collecting electrodes for dipole-assisted back-contact perovskite solar cells. Nano Energy 2020, 67, 104223 DOI: 10.1016/j.nanoen.2019.104223. doi: 10.1016/j.nanoen.2019.104223
Machine learning property prediction for organic photovoltaic devices. npj Computational Materials 2020, 6 (1) DOI: 10.1038/s41524-020-00429-w. doi: 10.1038/s41524-020-00429-w
Light intensity modulated photoluminescence for rapid series resistance mapping of perovskite solar cells. Nano Energy 2020, 73, 104755 DOI: 10.1016/j.nanoen.2020.104755. doi: 10.1016/j.nanoen.2020.104755
The Performance‐Determining Role of Lewis Bases in Dye‐Sensitized Solar Cells Employing Copper‐Bisphenanthroline Redox Mediators. Advanced Energy Materials 2020, 10 (37), 2002067 DOI: 10.1002/aenm.202002067. doi: 10.1002/aenm.202002067
High Efficiency Mesoscopic Solar Cells Using CsPbI3 Perovskite Quantum Dots Enabled by Chemical Interface Engineering. Journal of the American Chemical Society 2020, 142 (8), 3775 - 3783 DOI: 10.1021/jacs.9b10700. doi: 10.1021/jacs.9b10700
Light-induced reversal of ion segregation in mixed-halide perovskites. Nature Materials 2020 DOI: 10.1038/s41563-020-00826-y. doi: 10.1038/s41563-020-00826-y
Chemical passivation of the perovskite layer and its real-time effect on the device performance in back-contact perovskite solar cells. Journal of Vacuum Science & Technology A 2020, 38 (6), 060401 DOI: 10.1116/6.0000481. doi: 10.1116/6.0000481
Solvent Engineering of a Dopant-Free Spiro-OMeTAD Hole-Transport Layer for Centimeter-Scale Perovskite Solar Cells with High Efficiency and Thermal Stability. ACS Applied Materials & Interfaces 2020, 12 (7), 8260 - 8270 DOI: 10.1021/acsami.9b21177. doi: 10.1021/acsami.9b21177
Solution‐Processed Faraday Rotators Using Single Crystal Lead Halide Perovskites. Advanced Science 2020, 7 (7), 1902950 DOI: 10.1002/advs.201902950. doi: 10.1002/advs.201902950
P‐Dopant: LiTFSI‐Free Spiro‐OMeTAD‐Based Perovskite Solar Cells with Power Conversion Efficiencies Exceeding 19%(Cover: Adv. Energy Mater. 32/2019). Advanced Energy Materials 2019, 9 (32) DOI: 10.1002/aenm.201970123. doi: 10.1002/aenm.201970123
LiTFSI‐Free Spiro‐OMeTAD‐Based Perovskite Solar Cells with Power Conversion Efficiencies Exceeding 19%. Advanced Energy Materials 2019, 9 (32), 1901519 DOI: 10.1002/aenm.201901519. doi: 10.1002/aenm.201901519
Ultrasonic spray deposition of TiO2 electron transport layers for reproducible and high efficiency hybrid perovskite solar cells. Solar Energy 2019, 188, 697 - 705 DOI: 10.1016/j.solener.2019.06.045. doi: 10.1016/j.solener.2019.06.045
Perovskite solar cells with a hybrid electrode structure. AIP Advances 2019, 9 (12), 125037 DOI: 10.1063/1.5127275. doi: 10.1063/1.5127275
Visualizing Phase Segregation in Mixed-Halide Perovskite Single Crystals. Angewandte Chemie International Edition 2019, 58 (9), 2893 - 2898 DOI: 10.1002/anie.201810193 . doi: 10.1002/anie.201810193
Silver Bismuth Sulfoiodide Solar Cells: Tuning Optoelectronic Properties by Sulfide Modification for Enhanced Photovoltaic Performance. Advanced Energy Materials 2019, 9 (5), 1803396 DOI: 10.1002/aenm.201803396. doi: 10.1002/aenm.201803396
Tracking Dynamic Phase Segregation in Mixed‐Halide Perovskite Single Crystals under Two‐Photon Scanning Laser Illumination. Small Methods 2019, 3 (11), 1900273 DOI: 10.1002/smtd.201900273. doi: 10.1002/smtd.201900273
Fatigue stability of CH3NH3PbI3 based perovskite solar cells in day/night cycling. Nano Energy 2019, 58, 687 - 694 DOI: 10.1016/j.nanoen.2019.02.005. doi: 10.1016/j.nanoen.2019.02.005
Multiple Roles of Cobalt Pyrazol-Pyridine Complexes in High-Performing Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2019, 10 (16), 4675 - 4682 DOI: 10.1021/acs.jpclett.9b01783. doi: 10.1021/acs.jpclett.9b01783
Self-assembly of spherical and rod-shaped nanoparticles with full positional control. Nanoscale 2019, 11 (47), 22841-22848 DOI: 10.1039/C9NR06679A. doi: 10.1039/C9NR06679A
Large-Area Nanofabrication of Partially Embedded Nanostructures for Enhanced Plasmonic Hot-Carrier Extraction. ACS Applied Nano Materials 2019, 2 (3), 1164 - 1169 DOI: 10.1021/acsanm.8b01988. doi: 10.1021/acsanm.8b01988
Effect of Grain Cluster Size on Back-Contact Perovskite Solar Cells. Advanced Functional Materials 2018, 28 (45), 1805098 DOI: 10.1002/adfm.201805098. doi: 10.1002/adfm.201805098
Interfacial benzenethiol modification facilitates charge transfer and improves stability of cm-sized metal halide perovskite solar cells with up to 20% efficiency. Energy & Environmental Science 2018, 11 (7), 1880 - 1889 DOI: 10.1039/C8EE00754C. doi: 10.1039/C8EE00754C
Back-contact perovskite solar cells with honeycomb-like charge collecting electrodes. Nano Energy 2018, 50, 710 - 716 DOI: 10.1016/j.nanoen.2018.06.006. doi: 10.1016/j.nanoen.2018.06.006
4-tert-Butylpyridine Free Hole Transport Materials for Efficient Perovskite Solar Cells: A New Strategy to Enhance the Environmental and Thermal Stability. ACS Energy Letters 2018, 3 (7), 1677 - 1682 DOI: 10.1021/acsenergylett.8b00786. doi: 10.1021/acsenergylett.8b00786
Spray deposition of AgBiS 2 and Cu 3 BiS 3 thin films for photovoltaic applications. Journal of Materials Chemistry C 2018, 6 (10), 2483 - 2494 DOI: 10.1039/C7TC05711C. doi: 10.1039/C7TC05711C
Chemical Dopant Engineering in Hole Transport Layers for Efficient Perovskite Solar Cells: Insight into the Interfacial Recombination. ACS Nano 2018, 12 (10), 10452 - 10462 DOI: 10.1021/acsnano.8b06062. doi: 10.1021/acsnano.8b06062
Fabrication of Back-Contact Electrodes Using Modified Natural Lithography. ACS Applied Energy Materials 2018, 1 (3), 1077 - 1082 DOI: 10.1021/acsaem.7b00213. doi: 10.1021/acsaem.7b00213
Structural and Chemical Changes to CH 3 NH 3 PbI 3 Induced by Electron and Gallium Ion Beams. Advanced Materials 2018, 30 (25), 1800629 DOI: 10.1002/adma.201800629. doi: 10.1002/adma.201800629
Transparent Quasi-Interdigitated Electrodes for Semitransparent Perovskite Back-Contact Solar Cells. ACS Applied Energy Materials 2018, 1 (9), 4473 - 4478 DOI: 10.1021/acsaem.8b01140. doi: 10.1021/acsaem.8b01140
Molecular Engineering of Zinc-Porphyrin Sensitisers for p-Type Dye-Sensitised Solar Cells. ChemPlusChem 2018, 83 (7), 711 - 720 DOI: 10.1002/cplu.201800104. doi: 10.1002/cplu.201800104
Perovskite Tandem Solar Cells. Advanced Energy Materials 2017, 7 (18), 1602761 DOI: 10.1002/aenm.201602761. doi: 10.1002/aenm.201602761
Directing nucleation and growth kinetics in solution-processed hybrid perovskite thin-films. Science China Materials 2017, 60 (7), 617 - 628 DOI: 10.1007/s40843-017-9043-y. doi: 10.1007/s40843-017-9043-y
Polypyridyl Iron Complex as a Hole-Transporting Material for Formamidinium Lead Bromide Perovskite Solar Cells. ACS Energy Letters 2017, 2 (8), 1855 - 1859 DOI: 10.1021/acsenergylett.7b00522. doi: 10.1021/acsenergylett.7b00522
Controlled Growth of Monocrystalline Organo-Lead Halide Perovskite and Its Application in Photonic Devices. Angewandte Chemie International Edition 2017, 56 (41), 12486 - 12491 DOI: 10.1002/anie.201703786. doi: 10.1002/anie.201703786
Diammonium and Monoammonium Mixed-Organic-Cation Perovskites for High Performance Solar Cells with Improved Stability. Advanced Energy Materials 2017, 7 (18), 1700444 DOI: 10.1002/aenm.201700444. doi: 10.1002/aenm.201700444
Dipole-field-assisted charge extraction in metal-perovskite-metal back-contact solar cells. Nature Communications 2017, 8 (1), 613 DOI: 10.1038/s41467-017-00588-3. doi: 10.1038/s41467-017-00588-3
Phase Segregation Enhanced Ion Movement in Efficient Inorganic CsPbIBr 2 Solar Cells. Advanced Energy Materials 2017, 7 (20), 1700946 DOI: 10.1002/aenm.201700946. doi: 10.1002/aenm.201700946